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Abstract
Causal polytrees are singly connected causal
models and they are frequently applied in prac-
tice. However, in various applications, many
variables remain unobserved and causal poly-
trees cannot be applied without explicitly includ-
ing unobserved variables. Our study thus propos-
es the ancestral polytree model, a novel combi-
nation of ancestral graphs and singly connected
graphs. Ancestral graphs can model causal and
non-causal dependencies, while singly connect-
ed models allow for efficient learning and infer-
ence. We discuss the basic properties of ancestral
polytrees and propose an efficient structure learn-
ing algorithm. Experiments on synthetic datasets
and biological datasets show that our algorithm
is efficient and the applications of ancestral poly-
trees are promising.

1. Introduction
Causal graphical models have been proposed to explicit-
ly convey causal relations between causes and their effects
in reasoning tasks (Pearl, 2000). As a special class, poly-
trees are singly connected graphical models where each
pair of variables is connected through at most one path
(Huete & de Campos, 1993). Since Rebane and Pearl intro-
duced polytree-like Bayesian networks (Rebane & Pearl,
1987), called dependency polytrees, further research has
shown that, (1) belief propagation can be performed com-
putationally efficiently in polytrees (Pearl, 1988). (2)
Learning the maximum likelihood dependency polytrees
was proven to be NP-hard (Dasgupta, 1999). (3) Polyno-
mial algorithms were proposed to learn causal polytrees via
The Workshop of Learning Tractable Probabilistic Model (LTPM)
at the 31 st International Conference on Machine Learning (ICM-
L), Beijing, China, 2014. Copyright 2014 by the authors.

conditional independence (CI) tests (Huete & de Campos,
1993; Ouerd et al., 2004). (4) Based on independen-
cy properties of isomorphic polytrees (Campos, 1998), a
sound and complete criterion was proposed to read inde-
pendence relations from minimal directed independence
maps (Pena, 2007).

Insofar, many variables remain unobserved in many appli-
cations, which have driven us to design robust causal mod-
els bearing unobserved (synonymous with latent and hid-
den) variables. However, learning large Bayesian networks
is slow (Ouerd et al., 2004) and causal polytrees cannot ex-
press causal flows without explicitly including unobserved
variables, causing the increased complexity of causal rea-
soning, structure learning and inference. The drawbacks
above motivate us to introduce ancestral polytrees (APs)
with a fast structure learning algorithm and we show this
new model can be used to learn many biological systems.

Polytree models have been applied in real world applica-
tions. For example, dependency polytrees were efficient-
ly implemented to enhance caching strategies in distribut-
ed databases (Messaouda et al., 2003). Based on depen-
dency polytrees, an inference framework was successful-
ly designed to optimize hardware components according
to the performance and price of both traditional and nan-
otechnology architectures (Zaveri & Hammerstrom, 2010).
Moreover, protein signaling pathways might be modeled by
causal polytrees. For instance, Figure 1 illustrates an NF-
kB protein signaling pathway, which activates mammalian
immune system cells to produce antibodies against inflam-
mation (Lodish et al., 2004). In this example, causal flows
are indicated by red arrows and the activation or inhibition
of involved proteins represent cause or effect events.

Protein signaling pathways can be aptly modeled in cases
where protein signalling data have been collected, for in-
stance, using multiparameter flow cytometry (Sachs et al.,
2005). So far, many proteins in protein signaling pathways
remain unobserved, which have driven us to design robust



Learning Ancestral Polytrees

P P

P P

IL-1 

receptor

TNF-a 

receptor

alpha

beta

gamma

I-kB kinase

E3 ligase

E3 ligase

TAK1

P50
P65

I-kBa

P50
P65

I-kBa

P50
P65

Exterior

Cytosol

Nucleus

Unknown

mechanism

Sequestered 

NF-kB

NF-kB

poly-ubiquitin

P P

P50
P65

I-kBa

I-kBa

E3 ligase

Figure 1. An NF-kB protein signaling pathway (adapted from
(Lodish et al., 2004)). IL-1 and TNF-α are transmitted to IL-1 re-
ceptors and TNF-α receptors due to extracellular signals. These
receptors then activate TAK1, which immediately activates the I-
kBα kinase. The I-kBα kinase phosphorylates two serine residues
in the I-kBα, allowing for the further binding of the E3 ligase to
trigger the degradation of I-kBα and NF-kB. Thereafter, NF-kB is
transported into nucleus and activates gene transcription. Twist-
ed red arrow indicates that there is still an unknown mechanism
which cooperates with TAK1 to activate the I-kBα kinase.

causal models bearing latent variables. However, causal
polytrees cannot express causal flows without explicitly in-
voking latent variables, causing the increased complexity
of causal reasonings. Fortunately, ancestral graphs (AGs)
have been proposed to model latent variables without in-
voking any additional variables (Ali et al., 2009). This has
motivated us to introduce ancestral polytrees (APs) as the
extensions of causal polytrees.

In ancestral graphs, every missing edge indicates an inde-
pendence relation (Richardson & Spirtes, 2002). Besides
the lack of any directed cycles in both DAGs and AGs,
AGs contain directed edges, bidirected edges and undirect-
ed edges, in contrast to DAGs, which only permit direct-
ed edges. AGs are refined surrogates for DAGs even in
the presence of unobserved variables and selection effect-
s (Zhang, 2008). Since causal polytrees are the offsprings
of DAGs and singly connected networks, APs are the pro-
genies of AGs and singly connected networks. This merit
allows for APs to inherit the merits of both AGs and singly
connected networks. On the one hand, APs can express
causal diagrams without invoking additional variables in
the presence of unobserved variables. On the other hand,
due to their simplified structures, APs might guarantee a
fast structure learning and inference compared to DAGs
and general AGs. However, this inheritance in turn de-
mands a strong assumption — that is, the underlying rea-
soning diagrams of APs must be singly connected.

This paper begins with basic definitions. We then charac-
terize the properties of APs regarding Markov equivalence,
essential graphs and factorization. We thereafter introduce
a structure learning algorithm. In the experiments, we com-
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Figure 2. A polytree network with 21 vertices.

pare the performance of our algorithm with other state-of-
the-art methods on synthetic datasets. We also apply our
model to investigate the protein signalling pathways and
HIV-1 mutation pathways using three biological datasets.

2. Definitions and properties
Most notations in this section have been adapted from
(Ali et al., 2009). For a graph G = (V,E) we denote with
V (G) the set of vertices of G and with E(G) ⊆ V ×V the
set of edges of G, where E ⊆ {α op y | α, β ∈ V ∧ op ∈
{←,→,↔,−}}. The symbols α ← β, α − β and α ↔ β
denote the directed, undirected and bidirected edges be-
tween vertices α and β, respectively. GU = (V,EU ) rep-
resents the undirected version of G called skeleton. The
endpoint > of an edge is called an arrowhead, or the end-
point − is a tail. The symbol ∗ is used if the endpoint of an
edge is either an arrowhead or a tail. For instance, α − ∗β
means either α → β or α − β, and α∗ → β means either
α→ β or α↔ β. The parent set of a vertex α is Pa(α) ≡
{β | β → α}; the neighbor set is Ne(α) ≡ {β | β − α};
the spouse set is Sp(α) ≡ {β | β ↔ α}; the descendant
set isDe(α) ≡ {β | α→ · · · → β or β = α}; the ancestor
set is An(α) ≡ {β | β → · · · → α or β = α}; the anterior
set is Ant(α) ≡ {β | β − ∗ · · · − ∗α or β = α}; the ar-
chaic set is Ar(α) ≡ {β | β∗ → · · · ∗ → α or β = α}. A
path πα,β refers to a sequence of edges from α to β with-
out duplicate edges. The πα,β is a directed, undirected or
bidirected path if it only contains directed, undirected, or
bidirected edges, respectively. A path α ∗ − ∗ β ∗ − ∗ γ
is called a triple if α and γ are disjointed. A vertex β is
called a collider on a path if and only if the path contains
a triple α∗ → β ← ∗γ, so called ν-structure. The πα,β
is an inducing path if its internal vertices are all colliders
and ancestors of either α or β, or both (see examples and
properties of inducing paths on the page 2815 of (Ali et al.,
2009)). An undirected subgraph comprises vertices linked
by undirected paths alone, whereas a bidirected subgraph
comprises vertices linked by bidirected paths alone.

Given the polytree graph in Figure 2, we provide sever-
al examples of above definitions: Pa(X5) = {X6};
Ne(X2) = {X1}; Sp(X4) = {X5}; De(X3)
= {X3, X4, X9}; An(X4) = {X2, X3, X4, X8, X10};
Ant(X4) = {X1, X2, X3, X4, X8, X10, X11, X15};
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Ar(X4) = {X2, X3, X4, X5, X6, X8, X10};
X2 → X3 ← X10 and X3 → X4 ↔ X5 are ν-
structures; X3, X4, X17, X20 are colliders; πX10,X16 is an
undirected path; πX10,X9 is a directed path; πX17,X21 is a
bidirected path; an undirected subgraph contains X1, X2

and a bidirected subgraph contains X17, X20, X21.

Let X,Y, Z be variables or sets of variables, ⟨X,Y |Z⟩ de-
notes that X and Y are conditionally independent given Z;
otherwise, ⟨X,Y - Z⟩. ⟨X,Y ⟩ refers to the fact that X and
Y are marginally independent; otherwise, ⟨X,Y - ∅⟩. We
use CI tests to determine the conditional independence. In
ancestral graphs, independency relations can be identified
using m-separation (Richardson & Spirtes, 2002).
Definition 1. m-separation. Two vertices µ and ν are m-
separated given Z in G — denoted as ⟨µ, ν|Z⟩m — where
Z ⊆ V (G)\{µ, ν} if and only if every path between µ and
ν contains either one triple from (1) α → β → γ, α ↔
β → γ, α ← β → γ, α − β → γ, α − β − γ, and
β ∈ Z, or one triple from (2) α → β ← γ, α ↔ β ← γ,
α↔ β ↔ γ, and De(β) ∩ Z = ∅.

Two vertex sets X,Y are m-separated given Z if all the
paths from X to Y are m-separated by Z. Figure 1(b)
indicates the examples that ⟨X2, X4|X3⟩, ⟨X2, X4 - ∅),
⟨X2, X8⟩, ⟨X2, X8 - X3⟩, ⟨X3, X5⟩, ⟨X3, X5 - X4⟩,
⟨X2, X9|X3, X4⟩ and ⟨X3, X6 - X4, X5⟩.
Definition 2. Ancestral graph (AG)(Ali et al., 2009). A
graph G is an ancestral graph if and only if three condi-
tions hold: (i) there are no directed cycles; (ii) if there is
an undirected edge α−β, then α and β have neither spous-
es nor parents; (iii) wherever there is a bidirected edge
α ↔ β, no directed path passes from α to β, or from β
to α.

The attributes and examples of AG, as well as the differ-
ence between AGs and Bayesian networks, have been clar-
ified in (Richardson & Spirtes, 2002; Ali et al., 2009)
Definition 3. Maximal ancestral graph (MAG) (Ali et al.,
2009). An ancestral graph is maximal if and only if there
exists Z such that ⟨α, β|Z⟩ for any un-adjacent pair α, β ∈
V (G), where Z ⊆ V (G)\{α, β}.

In ancestral graphs, vertices represent observed variables
and edges represent causal relations. Many examples of
AGs and MAGs were provided in (Zhang, 2008; Ali et al.,
2009). The polytree network in Figure 1(b) is an AG. Re-
garding the interpretation of directed, undirected and bidi-
rected edges: (1) α → β indicates that the appearance of
α cultivates β which might be due to a direct cause (Pearl,
1988); (2) α ↔ β indicates that an unobserved variable L
exists in the path α← L→ β, whereas neither α causes β
nor β causes α (Zhang, 2008); (3) α− β indicates that α is
associated with β with no certainty whether α causes β or
vice-versa, due to selection bias (Zhang, 2008).

3. Ancestral polytree
In this section, we present our ancestral polytree model-
s, which combine the concept of ancestral graphs with the
idea of polytree structures.

Definition 4. Ancestral polytree (AP). A graphical model
G(V,E) with E ⊆ {α op β | α, β ∈ V ∧ op ∈ {←,→,↔
,−}} is an ancestral polytree if and only if two conditions
hold: (i) it is singly connected; (ii) if it has an undirected
edge α− β, neither α nor β has any spouse or parent.

Figure 1(b) demonstrates an example of AP. Moreover, it
has been proven that an AG is maximal if and only if
there is no inducing path between any non-adjacent ver-
tices (Corollary 4.4, (Richardson & Spirtes, 2002)). Since
APs are singly connected, the conditions (i) and (ii) in the
definition of AGs are guaranteed so that any AP is also an
AG. Because there is no inducing path in singly connected
AP so that any AP is an MAG.

As the subgraphs of causal polytrees, causal basins start
with ν-structures, and continue in the direction of directed
paths to traverse the children’s descendants and the direct
parents of these descendants (Pearl, 1988). For instance,
the vertices {X2, X3, X4, X8, X9, X10} in Figure 1(b) for-
m a causal basin (also see examples on page 393 of (Pearl,
1988)). We herein introduce ancestral basins in ancestral
polytrees.

Definition 5. Ancestral basin. A subgraph of an ancestral
polytree G is an ancestral basin GB if it starts with a ν-
structure containing a starting collider, and continues in
the direction of directed or bidirected paths to pass every
linked vertex, whose archaics include at least one collider,
or being a parent of a collider.

Definition 6. Simple ancestral polytree (SAP). Ancestral
polytree G is a SAP if and only if its edges are either in
ancestral basins or in undirected paths.

Proposition 1. Both β, γ are colliders if β ↔ γ ∈ E(GS).

Proof. Ar(β) contains at least one collider since GS is a
SAP. IfAr(β) ⊂ {β}, then β itself is a collider; ifAr(β) ⊃
{β}, at least one vertex α ∈ Ar(β) satisfies α∗ → β ↔ γ.
It ensures that β is a collider, so is γ.

A starting collider, also termed as a multi-parent node
(Pearl, 1988) or articulation point (Ouerd et al., 2004), rep-
resents the vertex β on a path containing −α → β ← γ−,
where an ancestral basin begins. For instance, the subgraph
containing {X2, X3, X4, X5, X6, X8, X9, X10} in Figure
1(b) is an ancestral basin whose starting collider is X3.
Yet, neither the subgraph containing {X11, X12, X13,X14}
nor the one containing {X15, X17, X18, X19, X20, X21} is
an ancestral basin, because there is no starting collider in
both subgraphs, and neither the parents of X11, X19 nor
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the anteriors of X11, X19 contain any collider. The AP in
Figure 1(b) becomes an SAP after replacing X12 → X13,
X19 → X18 with X12 ← X13, X19 −X18, respectively.

Let H(G) represent the independency in a causal diagram:

H(G) ≡ {⟨X,Y |Z⟩ | Disjointed subsets X,Y, Z ⊆ V (G)}

Definition 7. Markov equivalence (Ali et al., 2009). Two
ancestral graphs G1 and G2 are Markov equivalent, G1 ∼
G2, if H(G1) = H(G2).
Proposition 2. G1 ∼ G2 if and only if APs G1 and G2

have the same skeletons and ν-structures.

Due to limited space, a concise proof includes two parts.
(Necessary) Note that both APsG1 andG2 are also MAGs.
If G1, G2 are MAGs and G1 ∼ G2, then G1, G2 have
the same adjacencies and ν-structures (Proposition 3.6 in
(Ali et al., 2009)). (Sufficient) It was proven that if MAGs
G1, G2 share the same skeleton and colliders with order,
then G1 ∼ G2 (Theorem 3.7, (Ali et al., 2009)). If APs
G1 and G2 have the same ν-structures, they have the same
colliders with order because there is no discriminating path
(definition 3.8 and 3.11, (Ali et al., 2009)) in any AP.

Above proposition leads to a sufficient and necessary con-
dition to identify Markov equivalent APs. However, instead
of investigating all equivalent structures, it is vital to iden-
tify one essential graph which is sufficient to represent all
Markov equivalent structures.
Definition 8. Essential graph. Let [G] denote Markov e-
quivalence class of ancestral polytree G, whose condition-
al independencies are identical. MG is the essential graph
of G if and only if MG satisfies two conditions, (i) MG

shares the same skeleton with all APs in [G]; (ii) any di-
rected or bidirected edge exits in MG if and only if it is
shared by all APs in [G].

Note that essential graphs are equivalent to partial ancestral
graphs (Zhang, 2008) if AGs are restricted to be polytrees.
Let GS be a SAP, due to the condition (ii) above, GS ∈
[G] guarantees that GS includes all directed and bidirected
edges in MG. This fact leads to the next proposition.
Proposition 3. MG is a simple ancestral polytree.

The factorization of acyclic directed mixed graphs with di-
rected and bidirected edges was studied in (Richardson,
2009). The factorization of Gaussian distribution in MAG
can be decomposed as f(XV ) = f(XunG)f(XV \unG

|
XunG

), where unG and V \unG contain vertices of
undirected and directed subgraphs in MAG, respectively
(Richardson & Spirtes, 2002). To assess structure learning
and inference, the next proposition clarifies the factoriza-
tion of joint probability of ancestral polytrees.
Proposition 4. Given an ancestral polytree G = (V,E),
the joint probability of random variables can be decom-

posed into products of conditional probability distributions
as:

PG(XV ) =
1

Z

∏
Xi−Xj∈E(SU )

ψ(Xi,Xj)×
∏

b∈SB P (Xb|Ant(Xb))

×
∏

X∈SD

P (X | Ant(X), Ar(X))

Where SB is the set of subgraphs containing bidirected
edges, SU is the set of subgraphs containing undirect-
ed edges, SD is the set of subgraphs containing directed
edges, ψ is a factor potential of a clique formed with edge
α− β as a non-negative function, the normalization coeffi-
cient is defined as Z =

∫
XV (SU )

∏
α−β∈SU ψ(α, β)dX .

Proof. PG(X) = P (XSU )P (XSB , XSD |XSU ) =
P (XSU )P (XSB |Ne(XSB ), XSU )P (XSD |Ne(XSD ), XSU ).
Firstly, given any undirected subgraph s in SU and any
bidirected subgraph b in SB , the factorization can be
expressed as

∏
c∈C(s) ψc(X)/Z∗, where C(s) is the set

of cliques in s and Z∗ is the normalization coefficient.
Note that undirected subgraphs in SU are disjointed and
cliques in singly connected SU contain two neighbouring
nodes α, β on an undirected edge α − β. Therefore, the
factorization of SU is:

P (XSU ) =
∏
s∈SU

1

Z∗

∏
c∈C(s)

ψc(X) =
1

Z

∏
c∈C(SU )

ψc(X)

=
1

Z

∏
Xi−Xj∈E(SU )

ψ(Xi, Xj)

Secondly, Theorem 4 in (Richardson, 2009) reveals the fac-
torization of bidirected subgraphs as:

P (XSB |Ne(XSB ), XSU ) =
∏
b∈SB

P (Xb | Pa(Xb), V (SU ))

=
∏
b∈SB

P (Xb | Ant(Xb))

Thirdly, the factorization of directed subgraphs is:

P (XSD |Ne(XSD ), XSU ) =
∏

X∈SD

P (X|Pa(X),V (SB),V (SU ))

=
∏

X∈SD

P (X | Ant(X), Ar(X))

The proof is complete by multiplying three parts.

Particularly, if the entire ancestral polytree G is an ances-
tral basin, we have SU = ∅, SD = V −V (SB), Ant(X) =
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Ar(X). Mimicking each vertex in SD as an entire bidirect-
ed subgraph, the factorization of ancestral basin GB is:

PGB (XV ) =
∏

X∈V−V (SB)

P (X|Ant(X))×
∏

b∈SB P (Xb|Ant(Xb))

=
∏

b∈SB∪(V−V (SB))

P (Xb | Ant(Xb))

Examples in Figure 2 include: V (SU ) = {{X1, X2},
{X6, X7}, {X10, X11, X15, X16}}, V (SB) = {{X4, X5},
{X17, X20, X21}}, V (SD) = {{X9}, {X12, X13, X14},
{X3, X8}, {X18, X19}}. The factorization of AP with
configuration X=x in Figure 2 is: P (X = x) = [1/Z
ψ(x1, x2)ψ(x6, x7)ψ(x10, x11)ψ(x11, x15)ψ(x15, x16)]
×[p(x19)p(x18|x19)p(x13|x12)p(x14|x12)p(x3|x1, x2,
x8, x9, x10, x11, x15, x16)p(x12|x10, x11, x15, x16)] ×
[p(x4, x5|x3, x6, x7)p(x17, x20, x21|x10, x11, x15, x16, x18)]

4. Learning ancestral polytree
Given a training dataset, the methodology of training
causal polytrees usually involves two stages. First-
ly, undirected skeletons are trained either by maximum
weighted spanning trees (Pearl, 1988) or by CI tests
(Huete & de Campos, 1993). Secondly, the directionality
of edges in undirected skeletons are recovered by orienting
principles (Pearl, 1988; Ouerd et al., 2004) including two
rules. Rule 1: for all α−β−γ and ⟨α, γ⟩, orient α−β−γ
into α → β ← γ. Rule 2: for remaining α → β − γ ,
orient α → β − γ into α → β → γ. Based on the m-
separation, orienting principles for learning ancestral poly-
trees rely on the orienting principles of ancestral polytree
(OPAP), which also includes two rules:

Rule 1 : for all α ∗ − ∗ β ∗ − ∗ γ and ⟨α, γ⟩, orient α ∗ − ∗
β ∗ − ∗ γ into α∗ → β ← ∗γ.

Rule 2 : for remaining α∗ → β − γ, orient α∗ → β − γ
into α∗ → β → γ.

Based on the OPAP, we have designed a structure learning
algorithm using three tips: (1) search colliders through vis-
iting inner vertices from the one with the most undirected
edges to the one with the least, because every collider is an
inner vertex. (2) For each selected inner vertex, examine
CI test ⟨α, γ⟩ on the triplet α−β− γ first, and examine CI
test on α ← β → γ last (because it is comparatively rare
for both α and γ to be colliders). (3) Distinguish bidirected
from undirected edges by withdrawing detected bidirected
edges, and recover them back into the oriented structure.

Algorithm: Learning Ancestral Polytree (LAP)

Input: A training dataset and a polytree skeleton GU .

Output: A partially oriented ancestral polytree G.

Abbreviations: UV, the set of unvisited inner vertices; CS,
the set of colliders; BA, the set of bidirected edges; VIn, the
set of inner nodes; CI, the set of CI test.

Initiate CI = BA =∅, UV = VIn, G = GU .

While UV ̸= ∅

β = argmax
v∈UV
|NeG(v)|; UV = UV\{β};

For all α− β − γ ∈ E(G) and (α, γ) ̸∈ CI

Do CI = CI ∪ {(α, γ)}; if ⟨α, γ⟩, orient α− β − γ
into α→ β ← γ and CS = CS ∪ {β};

End for

For all α− β ← γ ∈ E(G) and (α, γ) ̸∈ CI

Do CI = CI∪{(α, γ)}; if ⟨α, γ⟩, orient α−β ← γ
into α→ β ← γ and CS = CS ∪ {β};

End for

For all α− β → γ ∈ E(G) and (α, γ) ̸∈ CI

Do CI = CI ∪ {(α, γ)}; if ⟨α, γ⟩, orient α − β →
γ into α → β ↔ γ and CS = CS ∪ {β},E(G) =
E(G)\{β ↔ γ},BA = BA ∪ {(β, γ)};

End for

For all α← β → γ ∈ E(G) and (α, γ) ̸∈ CI

Do CI = CI ∪ {(α, γ)}; if ⟨α, γ⟩, orient α ←
β → γ into α ↔ β ↔ γ and CS = CS ∪ {β}, E(G) =
E(G)\{α↔ β, β ↔ γ},BA = BA ∪ {(α, β), (β, γ)};

End for

For all α→ β − γ ∈ E(G)

Do orient α→ β → γ;

End for

End while

For all α ∈ CS, create an empty queue Q, push(Q,α);

While Q ̸= ∅

β = pop(Q),UV = UV\{β};

For all γ ∈ UV, β − ∗γ ∈ E(G)

Do orient β − γ into β ← γ, push(Q, γ);

End for

End while

End for

For all (α, β) ∈ BA

Do E(G) = E(G) ∪ {α↔ β}.

End for
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Return G

LAP has two major parts. The first part in the ”while” loop
and the second part in the ”for” loop orient the unvisited
edges based on the rule 1 and rule 2 of OPAP, respectively.
Using CI tests, each of the five ”for” loops in the first part
orients α−β−γ, α−β ← γ, α−β → γ, α← β → γ and
α → β − γ, respectively. The visited edges and nodes are
recorded to avoid repeating tests. The second part uses the
depth-first traversal to visit all colliders in ancestral basins
and to orient the undirected edges subsequently.

Ideally, consider there is an oracle to provide CI infor-
mation from a faithful ancestral polytree G, denoted as
GT . An algorithm is sound if it outputs a predicted G
that G ∈ [GT ], and algorithm is complete if it predicts
a maximally informative G for [GT ] (Zhang, 2008). The
soundness and completeness of 11 orientation rules have
been proven to train ancestral graphs (Zhang, 2008). These
11 orientation rules can be simplified into OPAP if AGs
are singly connected, which ensures the soundness and
completeness of LAP. Remind that two OPAP rules were
also included in the Fast Causal Inference algorithm (F-
CI) (Spirtes et al., 1995) and the augmented FCI (Zhang,
2008), both of which can model equivalent structures as
LAP if underlying structures were singly connected.

Many studies have endeavored to learn polytree skeletons
and well-known algorithms for maximum-likelihood learn-
ing of tree distributions have achieved the complexity of
O(n2 log(n)) (Leiserson et al., 2001). Herein we analyze
the computational complexity of LAP to show that LAP
can achieve a fast structure learning using refined orienting
procedures.

Proposition 5. Suppose skeleton GU is an undirected tree
which has one root with K adjacent vertices, and has in-
ner vertices all with K+1 adjacent vertices. Let N be the
number of vertices in GU , the number of required CI tests
R(GU ) satisfies:

R(GU ) ≤ (K + 1)(N − 1)/2−K

Proof. Let H be the depth of tree GU , we have N =∑H
i=1K

i−1 = (KH − 1)/(K − 1). Therefore,∑H−1
i=2 Ki−1 = (KH−1−K)/(K−1) = (N−1)/K−1.

The number of required CI tests is maximal if we test ⟨α, γ⟩
in all triplets formed as α − β − γ. Consider every inner
vertex has K(K + 1)/2 pairs of adjacent vertices except
the root, the summation of CI tests over all inner vertices
satisfies:
R(GU ) ≤ K(K − 1)/2 + K(K + 1)

∑H−1
i=2 Ki−1/2 =

(K + 1)(N − 1)/2−K.

Proposition 5 analyzes the complexity of LAP for a spe-

cial case of skeleton GU . For the general cases, we then
consider the average CI tests regarding the entire space
of the set of marginally independent tests T , denoted as
Ω. Given an arbitrary GU , let f(n) count the number
of T that requires n CI tests to train GU . In fact, the
set of f(n) has k(k − 1)/2 − ⌈k/2⌉ + 1 elements where
n = ⌈k/2⌉, ⌈k/2⌉+ 1, · · · , k(k − 1)/2 and ⌈k/2⌉ denotes
the upper bound of integer upon k/2 (e.g. ⌈3/2⌉ = 2). The
average CI tests of inner node v is:

E[R(GUv )] =
1

|Ω|

k(k−1)/2∑
n=⌈k/2⌉

[n× f(n)]

To date, we have not found any simple formula to decode
f(n) whose experiment data is:

f(2)={1},f(3)={2,6},f(4)={16,8,8,14,18},f(5)={128,192,
192,224,104,72,62,50}, f(6)={4096,4096,4096,3584,3584,
3968,3520,2560,1776,744,392,222,130}, f(7)={131072,
262144, 327680,311296,262144,233472,169984,123904,
88064,66560, 50048,33856,19808,10480,3944,1672,702,
322}, f(8)={16777216,25165824, 29360128,29360128,
27787264,25165824, 22413312,18874368,14680064,
10485760,7061504,4673536, 2883584,1775616,1086464,
681728,415488,233792,116128,51248,17384,6152,2046,
770}.

Even so, we have observed that regression methods can es-
timate E[R(GUv )] sufficiently. Particularly, we have found
similar results using both least square and robust linear re-
gressions, which use iteratively re-weighted least squares.
The output of least square regression is: E[R(GUv )] =
−1.3439 + 1.3425K, where the root mean square error is
ε = 0.2652 and the maximum residue is εmax = 0.3126,
observed at K = 5. Based on the above estimation, we
have:

E[R(GU )] =
∑

Vi∈VIn

[
1

|Ω|
∑
T∈Ω

R(GUVi
, T )] =

∑
Vi∈VIn

E[R(GUVi
)]

If K = maxv∈V |NeGU (v)|≤ 8, E[R(GU )] ≤
|VIn|×(1.3425K − 1.3439 + εmax). In other words, the
average CI tests for each inner node are bound by 1.3425K-
1.0313 if the maximal graphical degree meets the condition
of K≤8.

5. Experiments
Four experiments were carried out in this study: (1) we
compared LAP with both the causal Polytree Recovery
Algorithm (PRA) (Pearl, 1988) and the Polytree-Depth-
First-Search (PDFS) algorithm (Ouerd et al., 2004) using
a synthetic dataset, (2) we applied LAP to model protein
signaling pathways using a human immune cell dataset
(Sachs et al., 2005), (3) we explored the HIV-1 resistance
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Figure 3. Average structure accuracy (a) and umber of CI tests (b)
required by LAP, PDFS and PRA on the a synthetic dataset.

mutation pathways by LAP using the HIV-1 protease in-
hibitor nelfinavir (NFV) dataset (Deforche et al., 2006),
and (4) we used LAP to model the interaction networks
in the HIV-1 capsid protein. In our experiments, the al-
gorithm performance was evaluated using structure accura-
cy defined as: Acc = (|{(X,Y )|(X,Y ) ∈ E, (X,Y ) ∈
E∗, (Y,X) /∈ E∗}|)/(|V |−1), where G = (V,E) and
G∗ = (V,E∗) are the known and the predicted structures,
respectively. We used non-parametric bootstrapping with
100 replicates to cultivate polytree skeletons from the undi-
rected maximal spanning tree algorithm based on mutual
information (Chow & Liu, 1968). We used Fisher’s exac-
t test for CI tests (confidence level: 95%) and Laplace s-
moothing for probability calculations.

In the first experiment, we compared LAP with two causal
polytree algorithms PDFS and PRA using a synthetic
dataset. The synthetic data contained 6000 random poly-
trees with variable numbers (ranging from 20 to 49) and CI
sets randomly generated. For each variable number, 200
unique skeletons were randomly sampled for our analysis.
Figure 3(a) illustrates the comparison results, showing that
LAP (average structure accuracy: 82.72%) performs better
than the PDFS (64.6%) and PRA (49.54%) algorithms. We
also compared the number of CI tests required by the poly-
tree algorithms, illustrated in the Figure 3(b). The average
CI tests for PDFS, LAP and PRA were found to be 49.51,
47.53 and 37.02, respectively. This suggests that the weak
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Figure 4. (a) Human T cell protein signaling pathway network
modeled by LAP. Pink circles and blue triangles represent acti-
vators and inhibitors respectively. Other nodes represent proteins
in the signaling pathways. Red arrows are faithfully predicted
edges, black arrows are undetected edges but reported by bio-
logical studies and blue arrows are recovered assuming that the
protein PI3K is observed (Sachs et al., 2005). (b) Ancestral poly-
tree network of HIV-1 protease mutations selected by the protease
inhibitor NFV. NFV is colored yellow and colored squares distin-
guish protease drug resistance mutations from wild type residues.
Mutations from the same residue position are clustered and mutu-
al information is notified on edges. (c) HIV-1 protease structure.
Residue positions are annotated accordingly. The HIV-1 protease
PDB is 2QAK. Visualization software: PyMOL v1.5).

structure accuracies of PRA are compromised by the least
CI tests, and LAP performs better than PDFS.

In the second experiment, LAP was applied to flow cytom-
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Figure 5. (a) Ancestral polytree modeling of residue interaction
networks in HIV-1 capsid. Green and pink indicate residue po-
sitions in the loop and helix structures of capsid, respectively.
Circle, square and triangle represent positions in the C-terminal
(1-84), middle (85-145) and N-terminal (146-231) domains. Red
edges indicate positions whose Cα atoms are closer than 10Å of
the Euclidean distance in the capsid structure. (b) HIV-1 capsid
structure (PDB:3P05, visualized by PyMOL v1.5). The residue
positions 41, 120, 132, 136 across different functional domains
are annotated, as well as major clusters in two loop regions (po-
sitions: 1-16 and 85-100). Yellow links indicate the associations
between residue positions 136, 132, 41 and 120, predicted by our
ancestral polytree model. (c) Position 6 in the structure of HIV-1
capsid hexamer (PDB:3H4E, visualized by Chimera v1.7).

etry datasets of human T cell protein signaling pathways
(Sachs et al., 2005). The data was collected through in-
tracellular multicolor flow cytometry, which measures the
protein expression levels of 11 proteins with single-cell da-
ta points (Sachs et al., 2005). We first removed the outliers
whose values were 3 times larger than the mean values and
discretized the continuous data using an information pre-
serving algorithm (Hartemink, 2001). By doing so, 500
datasets were created containing data for 400 cells each.

Using 100 bootstrap samples on each dataset lead to 500
trained APs. Figure 4(A) shows a consensus AP which re-
covers 10 out of 14 expected signaling pathways, while B-
N analysis recovered 12 (Sachs et al., 2005). Note that the
bidirected edge PIP2↔PIP3 was recovered assuming that
the protein PI3K was observed.

In the third experiment, we modeled the interaction net-
work of HIV-1 protease mutations selected by the protease
inhibitor nelfinavir (NFV). We trained polytree networks
using the HIV-1 NFV dataset, which includes 1307 HIV-
1 protease amino acid sequences sampled from 967 drug-
naive and 340 NFV-treated patients (Deforche et al., 2006).
The trained polytree network is illustrated in Figure 4(b).
We mapped the mutation positions to the crystalized struc-
ture of HIV-1 protease (Figure 4(c)). We found that for
protease mutations that had less than 5 edges to the NFV
in the consensus AP, the Euclidean distances of Cα atom-
s between these mutations had less than 10 angstroms in
the 3D structure. Moreover, our AP shared 38 out of 58
edges compared to the trained BNs, described previously
in (Deforche et al., 2006). AP may help to study the asso-
ciations between HIV-1 drug resistance mutations, whereas
causal effects in drug resistance pathways and the impact of
unobserved variables require further investigations.

In our last experiment, we modeled the interaction net-
works of natural residues in HIV-1 capsid - a hexamer pro-
tein in the length of 231 residue positions. HIV-1 capsid
is a key protein to construct the structural surface of HIV-1
mature virions (Li et al., 2013). We followed the proce-
dure described in (Li et al., 2013) to collect HIV-1 capsid
sequences sampled from 787 treatment naive patients in the
HIV Los Alamos database. We removed both duplicate
sequences and sequences with stop codons. We aligned
nucleotide sequences using Seaview v4.4.0. Figure 5(a)
shows our consensus ancestral polytree for HIV-1 capsid.
It suggests that positions are clustered in AP regarding to
the loop and helix regions in functional domains of cap-
sid (Figure 5(b)), except the positions 83 and 116. Being
crucial for protein multimerization, position 6 connected
with many positions in AP (Figure 5(c)). Potentially, posi-
tions from the same functional domains tempt to cluster in
our causal network may explain the role of structural con-
straints. As shown in our recent study (Li et al., 2013), this
information can be useful for designing novel inhibitors tar-
geting HIV-1 capsid.

6. Conclusions and future work
This study introduces ancestral polytrees and their simple
structures which guarantee fast learning algorithms. Our
future study will focus on maximum likelihood and infer-
ence problems. We will also apply polytree models to large
biological networks such as genomic interaction networks.
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